
CS 188: Artificial Intelligence 
Markov Decision Processes

Instructors: Dan Klein and Pieter Abbeel 

University of California, Berkeley 
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Recap: Defining MDPs

▪ Markov decision processes: 
▪ Set of states S 
▪ Start state s0 
▪ Set of actions A 
▪ Transitions P(s’|s,a) (or T(s,a,s’)) 
▪ Rewards R(s,a,s’) (and discount γ) 

▪ MDP quantities so far: 
▪ Policy = Choice of action for each state 
▪ Utility = sum of (discounted) rewards
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Solving MDPs



Optimal Quantities

▪ The value (utility) of a state s: 
V*(s) = expected utility starting in s and 

acting optimally 

▪ The value (utility) of a q-state (s,a): 
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally 

▪ The optimal policy: 
π*(s) = optimal action from state s
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[Demo – gridworld values (L8D4)]



Snapshot of Demo – Gridworld V Values

Noise = 0.2 
Discount = 0.9 
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2 
Discount = 0.9 
Living reward = 0



Values of States

▪ Fundamental operation: compute the (expectimax) value of a state 
▪ Expected utility under optimal action 
▪ Average sum of (discounted) rewards 
▪ This is just what expectimax computed! 

▪ Recursive definition of value:
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Racing Search Tree



Racing Search Tree



Racing Search Tree

▪ We’re doing way too much work 
with expectimax! 

▪ Problem: States are repeated  
▪ Idea: Only compute needed 

quantities once 

▪ Problem: Tree goes on forever 
▪ Idea: Do a depth-limited 

computation, but with increasing 
depths until change is small 

▪ Note: deep parts of the tree 
eventually don’t matter if γ < 1



Time-Limited Values

▪ Key idea: time-limited values 

▪ Define Vk(s) to be the optimal value of s if the game ends in 
k more time steps 
▪ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]
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Living reward = 0
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Computing Time-Limited Values



Value Iteration



Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero 

▪ Given vector of Vk(s) values, do one ply of expectimax from each state: 

▪ Repeat until convergence 

▪ Complexity of each iteration: O(S2A) 

▪ Theorem: will converge to unique optimal values 
▪ Basic idea: approximations get refined towards optimal values 
▪ Policy may converge long before values do
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Example: Value Iteration

  0             0             0

  2             1             0

  3.5          2.5          0

Assume no discount!



Convergence*

▪ How do we know the Vk vectors are going to converge? 

▪ Case 1: If the tree has maximum depth M, then VM holds the 
actual untruncated values 

▪ Case 2: If the discount is less than 1 
▪ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1 

expectimax results in nearly identical search trees 
▪ The difference is that on the bottom layer, Vk+1 has actual rewards 

while Vk has zeros 
▪ That last layer is at best all RMAX  
▪ It is at worst RMIN  
▪ But everything is discounted by γk that far out 
▪ So Vk and Vk+1 are at most γk max|R| different 
▪ So as k increases, the values converge


