CS 188: Artificial Intelligence

Markov Decision Processes

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Defining MDPs

s Markov decision processes:
= Set of states S
» Start state s

= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’)))
» Rewards R(s,a,s’) (and discount v) /,/S,a,s

s MDP quantities so far:
= Policy = Choice of action for each state
» Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

= The value (utility) of a state s:

¥ _ els . : sisa
V*(s) = expected utility starting in s and <tate
acting optimally
(s,a)is a
= The value (utility) of a g-state (s,a): g-state
Q*(s,a) = expected utility starting out (s,a,5') is a
having taken action a from state s and transition

(thereafter) acting optimally

= The optimal policy:
nt*(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

Values of States

» Fundamental operation: compute the (expectimax) value of a state

= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

s Recursive definition of value:

V*i(s) = max Q*(s,a)

QR*(s,a) =) T(s,a, s {R(s, a,s’) + 'yV*(s’)}

V*i(s) = ma?XZT(s, a,s) {R(s,a, s") + ny*(s’)}

S

Racing Search Tree

Racing Search Tree

mm mmm
i

THITRIT L TR TR LL THTIRLLL

Racing Search Tree

= We're doing way too much work
with expectimax!

s Problem: States are repeated

= Idea: Only compute needed
guantities once

= Problem: Tree goes on forever

= ldea: Do a depth-limited

L e e e
computation, but with increasing L - - - -
depths until change is small
= Note: deep parts of the tree

eventually don't matter if y < 1 IR I T T TR I]

Time-Limited Values

= Key idea: time-limited values

« Define V,(s) to be the optimal value of s if the game ends in
k more time steps

= Equivalently, it’s what a depth-k expectimax would give from s

é Va(@)
(vP‘)\
| 4 ,
2 R =
T A 7T A X 7

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS N?ise =0.2
Discount =0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

.

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=6

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=11

GCridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

’x
B .A A 'A .A A AN

NN A NN

VT T T O O i VT T O O O o VO O Y |

llIIIIll I "I |‘I|lllxll| - llllllll . lllllljl Illll' - lll'llxl I lxIl'

AL IRUEIIIE CDE LN L

—
—
=
—
—

Value lteration

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + ’}/Vk(sl)}

S

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

Fast 05 +2

0.5 Overheated

+2

Assume no discount!

0 0 0
" [] Vip1(8) — max 3 T(s,0,8) [R(s.a,8) +7 Vi)

S

Convergence®

How do we know the V, vectors are going to converge?

Vi(s Vi S
Case 1: If the tree has maximum depth M, then V,, holds the k() k+1 ()
actual untruncated values

Case 2: If the discount is less than 1
« Sketch: For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V, ., has actual rewards

k+1
while V, has zeros

« Thatlast layeris at best all R,

s ltisat worst RMIN

= But everything is discounted by yk that far out / \ /

« SoV,andV,,, are at most yk max|R| different

k+1
= So as k increases, the values converge

