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Recap: Defining MDPs

s Markov decision processes:
= Set of states S
» Start state s

= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’)) )
» Rewards R(s,a,s’) (and discount v) /,/S,a,s

s MDP quantities so far:
= Policy = Choice of action for each state
» Utility = sum of (discounted) rewards



Solving MDPs




Optimal Quantities

= The value (utility) of a state s:

¥ _ els . : sisa
V*(s) = expected utility starting in s and <tate
acting optimally
(s,a)is a
= The value (utility) of a g-state (s,a): g-state
Q*(s,a) = expected utility starting out (s,a,5') is a
having taken action a from state s and transition

(thereafter) acting optimally

= The optimal policy:
nt*(s) = optimal action from state s

[Demo — gridworld values (L8D4)]



Snapshot of Demo — Gridworld V Values

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




Snapshot of Demo — Gridworld Q Values




Values of States

» Fundamental operation: compute the (expectimax) value of a state

= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

s Recursive definition of value:

V*i(s) = max Q*(s,a)

QR*(s,a) =) T(s,a, s {R(s, a,s’) + 'yV*(s’)}

V*i(s) = ma?XZT(s, a,s) {R(s,a, s") + ny*(s’)}

S



Racing Search Tree




Racing Search Tree
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Racing Search Tree

= We're doing way too much work
with expectimax!

s Problem: States are repeated

= Idea: Only compute needed
guantities once

= Problem: Tree goes on forever

= ldea: Do a depth-limited

L e e e
computation, but with increasing L - - - -
depths until change is small
= Note: deep parts of the tree

eventually don't matter if y < 1 IR I T T TR I ]



Time-Limited Values

= Key idea: time-limited values

« Define V,(s) to be the optimal value of s if the game ends in
k more time steps

= Equivalently, it’s what a depth-k expectimax would give from s
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[Demo — time-limited values (L8D6)]
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k=5

Cridworld Display
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k=6

Gridworld Display
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k=7

Gridworld Display
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k=8

Cridworld Display
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k=9

Gridworld Display
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k=10

Cridworld Display
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k=11

GCridworld Display
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k=12

Cridworld Display
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k=100

Cridworld Display
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Computing Time-Limited Values
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Value lteration




Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + ’}/Vk(sl)}

S

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do




Example: Value Iteration

Fast 05 +2

0.5 Overheated

+2

Assume no discount!

0 0 0
" [ ] Vip1(8) — max 3 T(s,0,8) [R(s.a,8) +7 Vi)

S




Convergence®

How do we know the V, vectors are going to converge?

Vi(s Vi S
Case 1: If the tree has maximum depth M, then V,, holds the k( ) k+1 ( )
actual untruncated values

Case 2: If the discount is less than 1
« Sketch: For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V, ., has actual rewards

k+1
while V, has zeros

« Thatlast layeris at best all R,

s ltisat worst RMIN

= But everything is discounted by yk that far out / \ /

« SoV,andV,,, are at most yk max|R| different

k+1
= So as k increases, the values converge



