
CS 188: Artificial Intelligence
Markov Decision Processes

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Defining MDPs

▪ Markov decision processes:
▪ Set of states S
▪ Start state s0
▪ Set of actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount γ)

▪ MDP quantities so far:
▪ Policy = Choice of action for each state
▪ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Solving MDPs

Policy Methods

Policy Evaluation

Fixed Policies

▪ Expectimax trees max over all actions to compute the optimal values

▪ If we fixed some policy π(s), then the tree would be simpler – only one action per state
▪ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

π(s)

s

s, π(s)

s, π(s),s’
s’

Do the optimal action Do what π says to do

Utilities for a Fixed Policy

▪ Another basic operation: compute the utility of a state s under
a fixed (generally non-optimal) policy

▪ Define the utility of a state s, under a fixed policy π:
Vπ(s) = expected total discounted rewards starting in s and following π

▪ Recursive relation (one-step look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’
s’

Example: Policy Evaluation
Always Go Right Always Go Forward

Example: Policy Evaluation
Always Go Right Always Go Forward

Policy Evaluation

▪ How do we calculate the V’s for a fixed policy π?

▪ Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

▪ Efficiency: O(S2) per iteration

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with Matlab (or your favorite linear system solver)

π(s)

s

s, π(s)

s, π(s),s’
s’

Policy Extraction

Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s)

▪ How should we act?
▪ It’s not obvious!

▪ We need to do a mini-expectimax (one step)

▪ This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values:

▪ How should we act?
▪ Completely trivial to decide!

▪ Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

▪ Value iteration repeats the Bellman updates:

▪ Problem 1: It’s slow – O(S2A) per iteration

▪ Problem 2: The “max” at each state rarely changes

▪ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

[Demo: value iteration (L9D2)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Iteration

▪ Alternative approach for optimal values:
▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
▪ Repeat steps until policy converges

▪ This is policy iteration
▪ It’s still optimal!
▪ Can converge (much) faster under some conditions

Policy Iteration

▪ Evaluation: For fixed current policy π, find values with policy evaluation:
▪ Iterate until values converge:

▪ Improvement: For fixed values, get a better policy using policy extraction
▪ One-step look-ahead:

Comparison

▪ Both value iteration and policy iteration compute the same thing (all optimal values)

▪ In value iteration:
▪ Every iteration updates both the values and (implicitly) the policy
▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

▪ In policy iteration:
▪ We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
▪ The new policy will be better (or we’re done)

▪ Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

▪ So you want to….
▪ Compute optimal values: use value iteration or policy iteration
▪ Compute values for a particular policy: use policy evaluation
▪ Turn your values into a policy: use policy extraction (one-step lookahead)

▪ These all look the same!
▪ They basically are – they are all variations of Bellman updates
▪ They all use one-step lookahead expectimax fragments
▪ They differ only in whether we plug in a fixed policy or max over actions

