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Recap: Defining MDPs

▪ Markov decision processes: 
▪ Set of states S 
▪ Start state s0 
▪ Set of actions A 
▪ Transitions P(s’|s,a) (or T(s,a,s’)) 
▪ Rewards R(s,a,s’) (and discount γ) 

▪ MDP quantities so far: 
▪ Policy = Choice of action for each state 
▪ Utility = sum of (discounted) rewards
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Solving MDPs



Policy Methods



Policy Evaluation



Fixed Policies

▪ Expectimax trees max over all actions to compute the optimal values 

▪ If we fixed some policy π(s), then the tree would be simpler – only one action per state 
▪ … though the tree’s value would depend on which policy we fixed
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Do the optimal action Do what π says to do



Utilities for a Fixed Policy

▪ Another basic operation: compute the utility of a state s under 
a fixed (generally non-optimal) policy 

▪ Define the utility of a state s, under a fixed policy π: 
Vπ(s) = expected total discounted rewards starting in s and following π 

▪ Recursive relation (one-step look-ahead / Bellman equation):
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Example: Policy Evaluation
Always Go Right Always Go Forward



Example: Policy Evaluation
Always Go Right Always Go Forward



Policy Evaluation

▪ How do we calculate the V’s for a fixed policy π? 

▪ Idea 1: Turn recursive Bellman equations into updates 
 (like value iteration) 

▪ Efficiency: O(S2) per iteration 

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system 
▪ Solve with Matlab (or your favorite linear system solver)
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Policy Extraction



Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s) 

▪ How should we act? 
▪ It’s not obvious! 

▪ We need to do a mini-expectimax (one step) 

▪ This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values: 

▪ How should we act? 
▪ Completely trivial to decide! 

▪ Important lesson: actions are easier to select from q-values than values!



Policy Iteration



Problems with Value Iteration

▪ Value iteration repeats the Bellman updates: 

▪ Problem 1: It’s slow – O(S2A) per iteration 

▪ Problem 2: The “max” at each state rarely changes 

▪ Problem 3: The policy often converges long before the values
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[Demo: value iteration (L9D2)]
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Policy Iteration

▪ Alternative approach for optimal values: 
▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence 
▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting 

converged (but not optimal!) utilities as future values 
▪ Repeat steps until policy converges 

▪ This is policy iteration 
▪ It’s still optimal! 
▪ Can converge (much) faster under some conditions



Policy Iteration

▪ Evaluation: For fixed current policy π, find values with policy evaluation: 
▪ Iterate until values converge: 

▪ Improvement: For fixed values, get a better policy using policy extraction 
▪ One-step look-ahead:



Comparison

▪ Both value iteration and policy iteration compute the same thing (all optimal values) 

▪ In value iteration: 
▪ Every iteration updates both the values and (implicitly) the policy 
▪ We don’t track the policy, but taking the max over actions implicitly recomputes it 

▪ In policy iteration: 
▪ We do several passes that update utilities with fixed policy (each pass is fast because we 

consider only one action, not all of them) 
▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass) 
▪ The new policy will be better (or we’re done) 

▪ Both are dynamic programs for solving MDPs



Summary: MDP Algorithms

▪ So you want to…. 
▪ Compute optimal values: use value iteration or policy iteration 
▪ Compute values for a particular policy: use policy evaluation 
▪ Turn your values into a policy: use policy extraction (one-step lookahead) 

▪ These all look the same! 
▪ They basically are – they are all variations of Bellman updates 
▪ They all use one-step lookahead expectimax fragments 
▪ They differ only in whether we plug in a fixed policy or max over actions


