CS 188: Artificial Intelligence

Markov Decision Processes

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)

- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards

Solving MDPs

Policy Methods

Policy Evaluation

Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π :

 $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π

Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 🕨	-10.00
-10.00	-8.69 🕨	-10.00

Always Go Forward

-10.00	100.00	-10.00
-10.00	▲ 70.20	-10.00
-10.00	▲ 48.74	-10.00
-10.00	▲ 33.30	-10.00

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

• This is called **policy extraction**, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$

Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Problem 1: It's slow – O(S²A) per iteration

- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

Gridworld Display				
	^	^		
0.00	0.00	0.00	0.00	
		^		
0.00		0.00	0.00	
	^	^	^	
0.00	0.00	0.00	0.00	
VALUES AFTER O TTERATIONS				

0	C Cridworld Display				
	▲ 0.00	• 0.00	0.00)	1.00	
	•		∢ 0.00	-1.00	
	•	• 0.00	• 0.00	0.00	
	VALUES AFTER 1 TTERATIONS				

k=2

Gridworld Display			
• 0.00	0.00 >	0.72 ▸	1.00
•		• 0.00	-1.00
• 0.00	• 0.00	• 0.00	0.00
VALUES AFTER 2 ITERATIONS			

k=3

0	O O Gridworld Display			
	0.00)	0.52 →	0.78)	1.00
	• 0.00		• 0.43	-1.00
	• 0.00	• 0.00	• 0.00	0.00
	VALUES AFTER 3 ITERATIONS			

k=4

Gridworld Display				
0.37 ▸	0.66)	0.83)	1.00	
•		• 0.51	-1.00	
• 0.00	0.00 →	• 0.31	∢ 0.00	
VALUES AFTER 4 ITERATIONS				

k=5

0.0	Gridworld Display				
	0.51)	0.72)	0.84)	1.00	
	• 0.27		• 0.55	-1.00	
	•	0.22 →	• 0.37	∢ 0.13	
	VALUES AFTER 5 ITERATIONS				

k=6

Gridworld Display					
	0.59)	0.73)	0.85)	1.00	
	• 0.41		• 0.57	-1.00	
	• 0.21	0.31 →	▲ 0.43	∢ 0.19	
	VALUES AFTER 6 ITERATIONS				

00	Gridworl	d Display		
0.62)	0.74 →	0.85 →	1.00	
• 0.50		• 0.57	-1.00	
▲ 0.34	0.36 →	▲ 0.45	◀ 0.24	
VALUES AFTER 7 ITERATIONS				

k=8

0 0	Gridworl	d Display	
0.63)	0.74 →	0.85)	1.00
• 0.53		• 0.57	-1.00
• 0.42	0.39)	• 0.46	∢ 0.26
VALUES AFTER 8 ITERATIONS			

k=9

Gridworld Display					
ſ	0.64)	0.74 ▸	0.85)	1.00	
	• 0.55		• 0.57	-1.00	
	• 0.46	0.40 →	• 0.47	◀ 0.27	
	VALUES AFTER 9 ITERATIONS				

Gridworld Display					
	0.64)	0.74 ▸	0.85)	1.00	
	• 0.56		• 0.57	-1.00	
	• 0.48	∢ 0.41	• 0.47	◀ 0.27	
	VALUES AFTER 10 ITERATIONS				

0 0	O O Gridworld Display				
	0.64)	0.74 →	0.85 →	1.00	
	• 0.56		• 0.57	-1.00	
	•	◀ 0.42	• 0.47	∢ 0.27	
	VALUES AFTER 11 ITERATIONS				

Gridworld Display				
0.64	▶ 0.74 ▶	0.85)	1.00	
• 0.57		• 0.57	-1.00	
• 0.49	◀ 0.42	0. 47	◀ 0.28	
VALUES AFTER 12 ITERATIONS				

O Gridworld Display				
0.64)	0.74 →	0.85)	1.00	
•		•		
0.57		0.57	-1.00	
^		^		
0.49	∢ 0.43	0.48	∢ 0.28	
VALUES AFTER 100 ITERATIONS				

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

This is policy iteration

- It's still optimal!
- Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions