CS 188: Artificial Intelligence

Reinforcement Learning Il

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

= Too many states to visit them all in training

= Too many states to hold the g-tables in memory

Instead, we want to generalize:
= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Video of Demo Q-Learning Pacman — Tiny — Watch All

Video of Demo Q-Learning Pacman — Tiny — Silent Train

Video of Demo Q-Learning Pacman — Tricky — Watch All

Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(Sa CL) — wlfl(sa a’)+w2f2(87 a’)_l_ y '_I_wnfn(sa CL)
Advantage: our experience is summed upina few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

Qs.0) = wifi(s @) Fwafals,)t Fwnfalsa) |

= Q-learning with linear Q-functions:

transition = (s,a,r,s)
difference = [r + v max Q(s, a')} — Q(s,a)
Q(s,a) «— Q(s,a) + o [difference] Exact Q’s

w; <+ w; + « [difference] f;(s,a) Approximate Q's

= |ntuitive interpretation:

= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

= Formal justification: online least squares

Example: Q-Pacman

Q(s,a) =4.0fpor(s,a) — 1.0fgsr(s,a)

A s
fDOT(S, NORTH) = 0.5
a = NORTH S/
r = —500
fasT(s,NORTH) =1.0
) _
Q(S, NORTH) = —|—1 Q(S/,) — 0

r+~vmaxQ(s’,a’) = —-500+0
a/
4.0 —501[0.5
difference = —501) WDOT <~ tol)
wagsT <+ —1.0 + « [—501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgsr(s,a) [Demo: approximate Q-

learning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression™

40

f1(x)

Prediction: Prediction:

y = wo + wi f1(x) y; = wo + w1 f1(z) + wafo(x)

Optimization: Least Squares™

2
total error = Z (yz — yAZ)Q = Z (yz' - Z’%fk@i))
p k

1

. Error or “residual”
Observation y

Prediction {g\

o f1(x) *

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = ; (y — Zwkfk(ﬂf))
k

0 error(w)

8'lUm

(y -y kak;(x)) fm(x)
k

Wi — wm + (y - ZW:fk:(ﬂ?)) fm(x)
k
Approximate g update explained:

wm — wm + a [r +ymaxQ(s',a") — Q(s,a)| fm(s, a)

“target” “prediction”

Conclusion

We're done with Part |: Search and Planning!

We’ve seen how Al methods can solve
problems in:

Search

Constraint Satisfaction Problems

= Games
Markov Decision Problems
Reinforcement Learning

Next up: Part II: Uncertainty and Learning!

